Odnawialne źródła energii
Materiały dla szkół ponadgimnazjalnych
Wersja polska powstała na zlecenie:

Profesjonalne Szkolenia Informatyczne sp. z o.o.
ul. Kościuszki 11
25-310 Kielce
e-mail: info@psi.kielce.pl

Zastrzeżonych nazw firm i produktów użyto w książce jedynie w celu identyfikacji.

Copyright © 2009 by Horizon Fuel Cell Technologies.
Wszelkie prawa zastrzeżone. Żadna część niniejszej publikacji nie może być powielana lub przekazywana w jakiejkolwiek formie lub w jakikolwiek sposób, elektroniczny lub mechaniczny, włączając fotokopie, nagrywanie, lub przechowywanie informacji i baz danych, bez pisemnej zgody wydawcy.

Horizon Fuel Cell Technologies
Block 19, No.2 Suide Rd.
Shanghai 200331, P.R. China
http://www.horizonfuelcell.com
Odnawialne źródła energii
Materiały dla szkół ponadgimnazjalnych
Rozdział 4. Elektrolizery .. 61
4.1. Wprowadzenie .. 62
4.2. Historia elektrolizerek ... 64
4.3. Rodzaje elektrolizerek ... 65
4.3.1. Elektrolizerek jednobiegunowy ... 65
4.3.2. Elektrolizerek dwubiegunowy ... 65
4.4. Typy elektrolizerek .. 66
4.4.1. Elektrolizery alkaliczne ... 66
4.4.2. Elektrolizery z membraną PEM .. 67
4.4.2.1. Elektrolit .. 68
4.4.2.2. Katalizatory .. 68
4.5. Tematy zaawansowane: Podstawy termodynamiki w konstruowaniu elektrolizerek 68
4.6. Produkcja i sprzedaż wodoru na świecie .. 71
4.7. Możliwości uzupełnienia energii związanej z wykorzystaniem elektrolizy................................. 72
4.8. Podsumowanie .. 73

Rozdział 5. Ogniwa paliwowe .. 75
5.1. Wprowadzenie .. 76
5.2. Historia ogniw paliwowych ... 76
5.3. Możliwości wykorzystania ogniw paliwowych .. 78
5.3.1. Zastosowania stacjonarne .. 79
5.3.2. Sektor transportowy .. 79
5.3.3. Zastosowanie w urządzeniach przenośnych .. 79
5.3.4. Wykorzystanie ogniw paliwowych w samochodach .. 80
5.4. Rodzaje ogniw paliwowych ... 82
5.4.1. Ogniwo paliwowe z membraną wymiany protonów (PEMFC) ... 83
5.4.2. Alkaliczne ogniwa paliwowe (AFCs) .. 83
5.4.3. Ogniwo Paliwowe z Elektrolitem z Kwasu Fosforowego (Phosphorid Acid Fuel Cell - PAFC) 84
5.4.4. Ogniwa paliwowe zelektrolitem tlenowym (SOFC) .. 84
5.4.5. Ogniwa paliwowe z elektrolitem ze stopionych węglanów (Molten Carbonate Fuel Cell - MCFC) .. 85
5.4.6. Ogniwa Paliwowe Bezpośrednio Zasilane Metanolem (Direct Methanol Fuel Cells - DMFCs) 85
5.5. Jak działa ogniwo paliwowe ... 86
5.5.1. Warstwa elektrolitu ... 87
5.5.2. Warstwa dyfuzyjna (GDL - Gas Diffusion Layer) .. 87
5.5.3. Warstwa katalizatora ... 87
5.5.4. Płytki dwubiegunowe .. 87
5.6. Konstrukcja i konfiguracja ogniw dwubiegunowych ... 88
5.7. Warunki pracy ogniw ... 88
5.7.1. Krzywe polaryzacyjne ... 89
5.8. Podsumowanie .. 90
Rozdział 6. Magazynowanie i transport wodoru

6.1. Wprowadzenie

6.2. Aspekty bezpieczeństwa związane z używaniem wodoru

6.3. Produkcja, dystrybucja oraz przechowywanie wodoru

6.4. Technologie przechowywania wodoru

6.4.1. Duże podziemne magazyny

6.4.2. Samochodowe zbiorniki ciśnieniowe wodoru

6.4.3. Magazynowanie wodoru w postaci ciekłej

6.4.4. Przechowywanie wodoru w postaci wodorków metali

6.4.5. Nanowłókna węglowe

6.4.5.1. Wytrzymałość nanorurek węglowych

6.4.5.2. Przechowywanie wodoru i inne zastosowania

6.5. Stacje paliwowe umożliwiające tankowanie wodoru

6.6. Podsumowanie

Rozdział 7. Podstawy elektronicznych układów zasilających

7.1. Wprowadzenie

7.2. Obwody

7.2.1. Obwody

7.2.2. Typowe pojęcia stosowane przy testowaniu urządzeń elektronicznych

7.2.2.1. Pomiar napięcia

7.2.2.2. Pomiar rezystancji

7.2.3. Podstawy pomiarów

7.2.3.1. Pomiar napięcia

7.2.3.2. Pomiar natężenia prądu

7.2.3.3. Pomiar rezystancji

7.3. Elektronika analogowa i cyfrowa

7.4. Prawo Ohma

7.5. Historia elektroniki

7.6. Elektroniczne układy zasilające dla systemów energii odnawialnej

7.7. Rodzaje podzespołów półprzewodnikowych dla urządzeń zasilających

7.7.1. Diody mocy

7.7.2. Urządzenia przełączające

7.7.2.1. Tranzystory MOSFET dużej mocy

7.7.2.2. Tranzystor bipolarny z izolowaną bramką

7.7.2.3. Tyrstor lub krzemowy prostownik sterowany

7.7.2.4. Tyrstor IGCT (Integrated Gate-Commutated Thyristor)

7.8. Konwertery dla systemów energetycznych

7.8.1. Konwertery prądu stałego DC-DC

7.8.2. Inwertery

7.9. Podsumowanie

Bibliografia

Źródła ilustracji

O autorze: Dr Colleen Spiegel
Rozdział 1
Środowisko i zmiany klimatu

1.1. Wprowadzenie
1.2. Światowe zapotrzebowanie na energię
1.3. Globalne ocieplenie
1.4. Wady aktualnych technologii energetycznych
1.5. Innowacyjne technologie ekologiczne
1.6. Koncepcja gospodarki opartej na czystej energii wodorowej
 bazująca na kombinacji źródeł odnawialnych
1.7. Podsumowanie
1.1 Wprowadzenie

Zasoby paliw kopalnych na Ziemi są ograniczone i znajdują się tylko w wybranych regionach świata, co prowadzi do konfliktów regionalnych i wojen. Ograniczona podaż i duży popyt powodują, że ceny paliw kopalnych będą rosnąć. Dlatego czas taniowej ropy naftowej szybko zbliża się do końca. Paliwa kopalne są potrzebne do utrzymania obecnego poziomu życia. Jednak wykorzystując je w dalszym ciągu, ludzie, rośliny i zwierzęta będą cierpieć z powodu skutków ubocznych, wynikających z korzystania z tych paliw. Powstające produkty odpadowe powodują ogrzewanie atmosfery ziemskiej oraz zanieczyszczenie powietrza, wody i gruntu. Wodnie to pogorszenie warunków życia dla wszystkich gatunków istniejących na Ziemi. Dlatego istnieją zarówno ekonomiczne jak i środowiskowe przyczyny rozwoju alternatywnych technologii energetycznych.
Pierwsze duże zainteresowanie alternatywnymi źródłami energii nastąpiło w 1970 roku, kiedy nagle zabrakło ropy naftowej. Mimo, że wciąż wydawało się, iż mnóstwo paliw kopalnych pozostało jeszcze do wydobycia, to kryzys ten uświadomił nam fakt, że zasoby są ograniczone i w końcu zostaną wyczerpane. W ciągu ostatniej dekady nastąpił wzrost zainteresowania przyjaznymi dla środowiska i bardziej racjonalnymi metodami wytwarzania energii. To zainteresowanie gwałtownie pobudziło badania naukowe związane z alternatywnymi paliwami i źródłami energii. Spalanie paliw kopalnych spowodowało poważne zanieczyszczenie powietrza i uszczuplenie światowych zasobów ropy naftowej.

Dla naszej Ziemi i wszystkich gatunków, które ją zamieszkuje, bardzo ważne jest, aby każdy korzystał z energii w sposób świadomy. Zestawy edukacyjne pozwalają poznać wszystkie podstawowe technologie wykorzystywane podczas uzyskiwania energii ze źródeł odnawialnych. Pokazują, jak energia odnawialna może być przekształcana i wykorzystywana. Te rodzaje energii są odnawialne, czyli jej zasoby są uzupełniane w środowisku w naturalny sposób. Poprzez poznание każdej technologii i eksperymentowanie, uczeń może dowiedzieć się dokładnie, jak te technologie działają. Mamy nadzieję, że wykonanie wszystkich eksperymentów nie tylko pomoże dowiedzieć się więcej o technologiach energetycznych, ale będzie też inspiracją do poszukiwania alternatywnych technologii energetycznych. W celu pogłębiania wiedzy o nowych technologiach warto oglądać wiadomości z dziedziny techniki, śledzić najnowsze osiągnięcia nauki na dedykowanych kanałach telewizyjnych, czy też wymieniać poglądy z przyjaciółmi. Mamy nadzieję, że omawiane technologie energetyczne będą inspirować do tworzenia własnych rozwiązań lub przyczynią się do poprawy i rozwijania obecnych technologii.
1.2 Światowe zapotrzebowanie na energię

Wykorzystanie paliw kopalnych wzrosło gwałtownie w XX wieku - aż czterokrotnie od 1970 roku. Światowa populacja konsumuje dziś produkty ropopochodne w wielkości 100 tys. razy większej niż w czasie, kiedy zaczynała z nich korzystać [1, 2]. Chiny są obecnie trzecim największym konsumentem ropy naftowej na świecie. Jeśli chiński obywatel zużywałby tyle samo ropy co obywatel amerykański - Chiny potrzebowałyby 90 mln baryłek ropy dziennie, aby zaspokoić swoje potrzeby [1, 2]. Obecnie średnia ilość ropy naftowej, produkowana w ciągu jednego dnia, to około osiemdziesiąt milionów baryłek [1].

Ilustracja 1-4 pokazuje aktualne i przewidywane zużycie energii od 1980 do 2030 roku [1]. Szacowany wzrost zużycia energii na świecie w latach 1980-2030 wynosi 2% rocznie. Ogółem na całym świecie wykorzystanie energii rośnie od 421 bilionów \(10^{15}\) brytyjskich jednostek cieplnych (BTU) w 2003 r. do 563 bilionów BTU w 2015 r. i 695 bilionów BTU w 2030 r. [1].

Brytyjska jednostka ciepła (BTU):
Jednostka energii wykorzystywana dla określenia mocy, często używana w ciepłownictwie i branży związanej z klimatyzacją. BTU zostało w dużej mierze zastąpione dżulem (J), jednostką układu SI, choć wciąż jest używane w takich krajach jak Wielka Brytania, Nowa Zelandia, Kanada i USA.

Najbardziej gwałtowny wzrost zapotrzebowania na energię w latach 2003 - 2030 r. przewidywany jest w Azji (Chiny, Indie), Ameryce Środkowej i Południowej, Afryce, oraz na Bliskim Wschodzie i Eurazji [1, 2]. Wymagania energetyczne tych krajów rosną średnio 5 procent rocznie. Zapotrzebowanie na energię z podziałem na regiony pokazano na rys. 1-5.
Średnia roczna stopa wzrostu (% AAGR):

Średni przyrost wartości w okresie jednego roku - wartość jest obliczana jako średnia arytmetyczna stopy wzrostu w skali roku. Na przykład, gdy w jednym roku zapotrzebowanie na energię dla danego regionu przewiduje się w wysokości 10%, a dla następnego 20%, to AAGR dla dwóch lat będzie wynosić 15%.

Niemal w każdym kraju istnieją systemy, które za pomocą podatków zachęcają do zmniejszenia zużycia paliw kopalnych. Istnieją również systemy wspierające wykorzystanie alternatywnych technologii energetycznych. Wielu ekspertów zachęca do redukcji zużycia paliw kopalnych w krajach uprzemysłowionych i promuje budowę infrastruktury umożliwiającej wykorzystanie zrównoważonych, odnawialnych źródeł energii.

Około 43% światowej populacji używa węgla jako podstawowego sposobu uzyskiwania energii, gazu ziemnego 22%, odpadów i palnych odnawialnych źródeł energii 14% (w tym energii geotermalnej, wodnej i słonecznej), energii nuklearnej 13%, paliw płynnych 8%, co pokazano na Ilustracji 1-6 [1, 2].

W XVIII i XIX wieku, węgiel był podstawowym paliwem używanym w czasie rewolucji przemysłowej. W erze samochodów i elektryczności w gospodarstwach domowych, ropa naftowa stała się głównym paliwem XX wieku. Jednak w ciągu ostatnich kilku lat to węgiel stał się najszybciej rozwijającym się paliwem kopalnym, głównie z powodu zwiększonego zużycia paliw kopalnych w Chinach. Choć odnawialne źródła energii zaspokajają obecnie niewielki procent całkowitego zużycia energii, to w porównaniu ze wszystkimi innymi typami energii, mają najwyższą średnią roczną stopę wzrostu (AAGR), co pokazano na rys. 1-7.
1.3 Globalne ocieplenie

Prawie każdy słyszał termin “globalne ocieplenie” i wie, że to oznacza ocieplenie klimatu na naszej planecie. Jednak większość z nas nie wie, co dokładnie to właściwie oznacza i jak się to ocenia.

Globalne ocieplenie:
Znaczny wzrost temperatury na Ziemi w krótkim okresie czasu, na skutek działalności człowieka.

Wzrost temperatury o 1°C w ciągu wieku, jest uważany za ocieplenie [3, 4]. Zmiany klimatu za zwyczaj trwają dziesiątki tysięcy lat. Chociaż wzrost o 1°C czy 2°C może wydawać się niewielki, to jednak nawet takie zmiany temperatury mogą mieć istotny wpływ na klimat. Kiedy słyszymy określenie „Epoka lodowcowa”, prawdopodobnie mamy na myśli świat pokryty śniegiem i lodem. Epoki lodowcowe zdarzały się w przeszłości co 50 tys. do 100 tys. lat, a średnie globalne temperatury były wtedy tylko 5 °C niższe niż są obecnie [3, 4].

Inne istotne fakty, które zostały opisane podczas tej konferencji to [3, 4, 5]:

- Ilość lodowców i śniegnunia półkuli północnej i południowej zmniejszyła się. Średnie temperatury arktyczne wzrosły dwukrotnie względem średniej światowej w ciągu ostatnich 100 lat.
- Opady deszczu wzrosły w obu Amerykach, Europie i północnej części Azji. W Południowej Afryce i w basenie Morza Śródziemnego odnotowano trendy pustynnienia.
- Gorące dni stają się coraz częstsze, a zimne dni są mniej częste i dotkliwe.

Naturalne zmiany klimatu, takie jak ocieplenie z powodu aktywności wulkanicznej, promieniowania słonecznego oraz zmian właściwości chemicznych atmosfery wymagają tysięcy lat, aby zmienić temperaturę tylko 1 °C [3, 4, 5].

Inne istotne fakty, które zostały opisane podczas tej konferencji to [3, 4, 5]:

- Ilość lodowców i śniegnunia półkuli północnej i południowej zmniejszyła się. Średnie temperatury arktyczne wzrosły dwukrotnie względem średniej światowej w ciągu ostatnich 100 lat.
- Opady deszczu wzrosły w obu Amerykach, Europie i północnej części Azji. W Południowej Afryce i w basenie Morza Śródziemnego odnotowano trendy pustynnienia.
- Gorące dni stają się coraz częstsze, a zimne dni są mniej częste i dotkliwe.

Naturalne zmiany klimatu, takie jak ocieplenie z powodu aktywności wulkanicznej, promieniowania słonecznego oraz zmian właściwości chemicznych atmosfery wymagają tysięcy lat, aby zmienić temperaturę tylko 1 °C [3, 4, 5].
1.3.1 Efekt cieplarniany

Globalne ocieplenie spowodowane jest wzrostem efektu cieplarnianego. Efekt cieplarniany jest zjawiskiem pożądany, ponieważ utrzymuje ciepło na Ziemi i umożliwia przeżycie na planecie. Gdy energia słoneczna wchodzi w atmosferę ziemską, około 70% energii pozostaje na planecie, a pozostałe 30% jest odbijane w kosmos [5].

![Ilustracja 1-9. Energia słoneczna i efekt cieplarniany](image-url)
1. Dwutlenek węgla (CO_2): gaz bezbarwny, który jest jednym z produktów ubocznych spalania paliw kopalnych. Większość CO_2 w atmosferze znalazła się tam w wyniku erupcji wulkanicznych miliony lat temu. Jednak od wielu lat wydatnie pomagamy w zwiększeniu stężenia dwutlenku węgla w atmosferze. Dwutlenek węgla jest głównym czynikiem powstawania globalnego ocieplenia, ponieważ absorbuje promieniowanie podczerwone. Światowa emisja CO_2 wzrosła z 1 mld ton w 1900 roku do 8 mld ton w roku 2000 [5]. Według szacunków IPCC ilość CO_2 w atmosferze wzrosła z 280 ppm w 1800 roku do 379 ppm w roku 2005 [5].

2. Podtlenek azotu (N_2O): poziom podtlenku azotu, który został wprowadzony do atmosfery jest niższy niż poziomy emisji CO_2, ale ilość energii, którą pochłania N_2O jest około 270 razy większa [5]. N_2O jest także produktem ubocznym spalania oraz pojawia się w wyniku uwalniania go w dużych ilościach.

3. Metan (CH_4): podstawowy składnik gazu ziemnego. Jest on produktem ubocznym spalania węgla, rozkładu śmieci, a w przyrodzie powstaje w wyniku beztlenuowego rozkładu szczątków roślinnych. Pochłania on około 20 razy więcej energii, niż CO_2, a zatem również nagrzewa atmosferę ziemi [5].

4. Para wodna: za efekt cieplarniany jest także, w dużym stopniu, odpowiedzialna para wodna. Zwykle jest to wynikiem zmian klimatycznych, a nie jest powodowane przez człowieka. Gdy ziemia się nagrzewa, para wodna podnosi się, a temperatura powietrza, przy gruncie, zmniejsza się. Ostatecznie, para wodna ochłodza się na tyle, że przekształca się z powrotem w ciekłą wodę, i ponownie opada. Ponieważ ilość pary wodnej rośnie, zatem więcej jej kondensuje się w chmurach, co przyczynia się do zwiększonego odbijania promieniowania słonecznego i powoduje, że mniej energii może wejść w ziemię atmosferę. Ilustracja 1-11 pokazuje cykle parowania wody, kondensacji i opadów atmosferycznych. Naukowcy nie mają pewności co do dokładnego wpływu rosnących ilości pary wodnej na ziemi, ale większe stężenie pary wodnej jest związane ze wzrostem ilości dwutlenku węgła.
1.3.2 Poziomy morza

Największe masy lodu na świecie są na Antarktydzie, która posiada 90% światowego lodu. Grubość lodu wynosi około 2133 metrów [5]. Jeśli ten lód się stopi, poziom oceanów wzrośnie około 61 metrów [5]. Na szczęście średnia temperatura Antarktydy wynosi -37°C, w związku z tym dość trudno uzyskać temperatury sprzyjające topnieniu [3, 5].

Pokrywa lodowa biegunu północnego nie jest tak gruba jak na Antarktydzie i pływa na powierzchni wody. Jeśli ten lód by się stopi, poziom mórz i oceanów może pozostać nienaruszony. Dużą pokrywę lodu posiada Grenlandia i gdyby jej powłoka lodowa została stopiona, to poziom wód wzrósłby o około 7 metrów [5]. Od Grenlandii do równika jest bliżej, zatem prawdopodobnie lód na Grenlandii stopiłby się jako pierwszy.
1.3.3 Skutki globalnego ocieplenia

Trudno jest przewidzieć wpływ globalnego ocieplenia na ekosystemy. Wiele ekosystemów jest bardzo delikatnych i już niewielkie zmiany mogą je drastycznie zmienić. Ekosystemy są ze sobą połączone, dlatego też zmiany w jednym ekosystemie z pewnością będą miały wpływ na inne ekosystemy. Wzrost temperatury lub opadów deszczu może wpłynąć na ilość plonów. W przybliżeniu około 5 mld dolarów kosztują rocznie straty wynikające ze słabych zbiorów z powodu globalnego ocieplenia [7]. Na każdy stopień wzrostu temperatury przypada 3 – 5 procentowy spadek plonów [5, 6].

Ekosystem:
Obszar, który składa się ze wszystkich żywych (roślin, zwierząt i mikroorganizmów) i nieożywionych czynników fizycznych, funkcjonujący w środowisku w zgodzie z sobą.

1.3.4 Czy możemy powstrzymać globalne ocieplenie?

Emisja gazów cieplarnianych bezpośrednio przyczynia się do problemów zdrowotnych, kwaśnych deszczy i powstawania ozonu. W wielu częściach Chin i Indii, zanieczyszczenie powietrza pozostaje kwestią zdrowia publicznego. Kwaśne deszcze powstają, gdy w atmosferze występuje dwutlenek siarki (SO₂), trójtlenek siarki (SO₃) i dwutlenek azotu (NO₂). Występują wówczas reakcje chemiczne wytwarzające związki kwasowe. Są one wchłaniane przez kropelki wody w chmurach, a następnie opadają na ziemię, zwiększając kwasowość ekosystemu. Może to szkodzić roślinom, glebie, oraz budynkom. Najbardziej kwaśne związki osadzają się w pobliżu źródeł zanieczyszczenia, ale mogą być również przenoszone w atmosferze przez setki lub tysiące kilometrów. Oznacza to, że utworzone w USA gazy mogą być przenoszone do Chin i odwrotnie.

Obecne stężenie dwutlenku węgla w lodzie wynosi od 180 do 300 ppm (części na miolion) i jest znacznie większe niż w lodzie przed ponad 650 tys. lat [3, 6]. Jeśli stężenie CO₂ wzrośnie do 400 - 440 ppm, to ewentualny wzrost temperatury może wynieść około 2,4 - 2,8 °C, [3, 4, 6]. Aby poziom CO₂ się ustabilizował, musi on najpierw osiągnąć wartość maksymalną, żeby następnie mógł zacząć opadać. Im szybciej, się to stanie, tym maksymalny poziom będzie mniejszy i szybciej będzie można uzyskać stabilizację. Według IPCC, w celu stabilizacji koncentracji ekwiwalentu CO₂, na poziomie 445-490 ppm szczycie emisji CO₂ powinien wystąpić najpóźniej w 2015 roku, aby następnie opasać poniżej 50-85% poziomu z roku 2000, co miałoby miejsce około roku 2050. Uzyskanie później maksymalnych wartości stężenia doprowadzi do większych wzrostów temperatury. Ilustracja 1-13 przedstawia średni wzrost globalnej temperatury i stężenia CO₂ oraz koncentracji CO₂ według lat.

Globalne ocieplenie będzie trwało jeszcze przez z powodu gazów cieplarnianych, które zostały już wpuszczone do atmosfery. Choć wydaje się, że wiele szkód już zostało już wyrządzone, to można jednak jeszcze zmniejszyć emisję robiąc kilka rzeczy:
Rozdział 1

• Poprawa efektywności energetycznej: efektywność energetyczna to stosunek energii uzyskanej do energii włożonej.

Efektywność energetyczna = \frac{Energia uzyskana na wyjściu urządzenia}{Energia dostarczona do wejścia urządzenia}

Wszystkie rodzaje urządzeń mogą stać się bardziej efektywne. Doprowadzi to do mniejszego zużycia paliw kopalnych, co z kolei zmniejszy emisję gazów cieplarnianych. Jednym ze sposobów poprawy efektywności energetycznej jest upewnienie się, że samochód, którego używamy ma właściwie ustawiony poziom emisji spalin, co z kolei przełoży się na zmniejszenie ilości emitowanych gazów.

• Oszczędzanie energii: oszczędzanie energii poprzez używanie mniejszej ilości usług, które wymagają energii. To również obniża emisję gazów. Istnieje wiele sposobów, aby oszczędzać energię: wyłączanie nieużywanych świateł, używanie wentylatora zamiast klimatyzacji, mniejsze zużycie ciepłej wody.

• Korzystanie z mniejszej ilości związków węgla w używanych paliwach kopalnych: jeśli węgiel jest przetwarzany bez stosowania czystych technologii węglowych, emituje 75% więcej dwutlenku węgla na jednostkę energii, a także więcej niż ropa naftowa [5]. Dlatego wykorzystanie gazu ziemnego zamiast węgla zmniejsza emisję CO₂ na jednostkę zużytej energii.

• Korzystanie z bezwęglowych źródeł energii: odnawialne źródła energii, takie jak wiatr, energia słoneczna i jądrowa nie wytwarzają CO₂. Jeśli wodór otrzymuje się w sposób zrównoważony, ogniwa paliwowe nie produkują CO₂. Te źródła energii mogą być wykorzystywane do podgrzewania wody, basenów lub całych gospodarstw domowych i przedsiębiorstw.

• Wychwytywanie i składowanie CO₂: istnieje wiele technologii, które pozwalają na wychwytywanie i przechowywanie CO₂ emitowanego podczas spalania paliw. Technologie te można stosować zarówno przed, jak i po spalaniu. CO₂ można przechowywać w opróżnionych złożach ropy i gazu, kawernach solnych czy też w nieczynnych kopalniach węgla.

Najlepszą metodą na znaczne zmniejszenie emisji zanieczyszczeń jest rozwój źródeł energii nie korzystających z paliw kopalnych. Alternatywne źródła energii, takie jak: energia słoneczna, wiatrowa i ogniwa paliwowe, mogą pomóc w redukcji emisji gazów cieplarnianych, jeśli będą powszechnie stosowane.
1.4 Wady aktualnych technologii energetycznych

Obecne technologie energetyczne to paliwa kopalne - węgiel, ropa, gaz - jak również silniki cieplne oraz baterie. Przewiduje się, że węgla, ropy i gazu już w niedalekiej przyszłości będzie brakować, a liczba ludności na świecie rośnie w szybkim tempie. Wzrasta także ilość zużytego paliwa.

Szacunki dla paliw kopalnych są bardzo zróżnicowane. Zakładając, że wskaźnik wykorzystania z roku 2005 pozostanie stały, konwencjonalnej ropy naftowej zabraknie za około 40 lat, a węgla za około 150 lat [4, 5]. Szybko spadnie wtedy produkcja i pozostałe kurczące się rezerwy. Roczne zużycie ropy naftowej w 2005 było na poziomie 0,18 ZJ [8].

Istnieje znaczna niepewność co do tych wyliczeń. 11 ZJ jako uzupełnienie rezerw może być założeniem optymistycznym [8]. Ilustracja 1-14 pokazuje przybliżony podział 57 ZJ ropy naftowej, która pozostała jeszcze na planecie [8]. Omówiliśmy już wady paliw kopalnych kilka razy, ale powtórzymy jeszcze raz niektóre z nich:

- **Są niedawialne**: paliwa kopalne są za-dobami nieodnawialnymi, których tworzenie trwało miliony lat. Dlatego też, gdy wyczerpią się ich rezerwy, nie ma sposobu, aby uzyskać ich więcej.

- **Zanieczyszczają środowisko**: dwutlenek węgla emitowany przy spalaniu paliw kopalnych jest jednym z głównych czynników przyczyniających się do efektu cieplarnia-nego. Węgiel emituje zarówno dwutlenek węgla, dwutlenek siarki jak i trójitlenek siarki, który powoduje kwaśne deszcze.

- **Kwaśne deszcze** mogą prowadzić również do niszczenia lasów oraz erozji skał i budynków murowanych. Ropa naftowa zawiera toksyczne związki chemiczne, które podczas spalania powodują zanieczyszczenie powietrza.

Zetta dżul (ZJ):

1 ZJ (zetta dżul) = 10^{21} J (dżuli)

Dżul (J) jest jednostką energii w Międynarodowym Układzie Jednostek i Miar (SI). Może być zdefiniowana jako praca potrzebna do przemieszczenia się ładunek elektrycznych o wartości jednego kulumba, tak aby wygenerować potencjał elektryczny o wartości 1 wolta. Może być również określana, jako ilość pracy, którą trzeba wykonać w ciągu 1 sekundy, aby wytworzyć moc 1 wata.
Rozdział 1

- emisja dwutlenku węgla może być zmniejszona do mniej niż 1%. W związku z tym, że samo-
chody te zasilane są za pomocą baterii emitują
mniej zanieczyszczeń niż pojazdy z silnikami
gazowymi. Ponadto, koszt energii wymaganej
do wygenerowania wodoru jest mniejszy niż
energii potrzebnej do wytworzenia benzyny. Ilustracja 1-15 przedstawia pojazdy elektryczne
napędzane ogniwami paliwowymi.

Obliczenia emisji dwutlenku węgla z różnych
 typów pojazdów może być dość skompliko-
wane. Jednak istnieje kilka sposobów, które
 mogą być wykorzystywane do obliczenia emisji
dwutlenku węgla [9]:

\[
PEF = \frac{Eg}{0.15} \times AF \times DPF
\]
- gdzie Eg to współczynnik paliwowego ekwi-
walentu energii elektrycznej, 0.15 to współczyn-
nik zawartości paliwa. AF jest pomocniczym
współczynnikiem ropopochodnym, a DPF jest
współczynnikiem sposobu jazdy. Metodologia ta
została opracowana przez amerykański departa-
ment energii i pozwala porównać zużycie paliwa
w pojazdach elektrycznych i hybrydowych
 z tradycyjnymi pojazdami benzynowymi.

Prosta metoda obliczania emisji spalin opar-
ta jest na rodzaju paliwa. Wskaźnik emisji
paliwa zależy od wartości opałowej paliwa,
współczynnika utlenienia i zawartości węgla.
Zatem emisję można obliczyć w następujący
sposób [9]:

\[
Emisja \ CO_2 = \text{ilość zużytego paliwa} \times \text{wartość opałowa} \times \text{wskaźnik emisji}
\]
Równanie to jest często używane
w celu uzyskania szybkich oszacowań
emisji \ CO_2.
1.5 Innowacyjne technologie ekologiczne

Jak wspomniano w sekcji 1.1, istnieje wiele rodzajów odnawialnych "zielonych" technologii. Technologie omawiane w zestawie edukacyjnym energii odnawialnych oparte są o takie elementy jak ogniwa paliwowe, ogniwa słoneczne, turbiny wiatrowe i elektrolizery. Wprowadzenie do tych technologii opisane jest w następnych sekcjach.

1.5.1 Ogniwa słoneczne

Ciepło i światło słoneczne dostarcza nieograniczoną ilości energii i może być wykorzystane na różne sposoby. Istnieje wiele technologii, których można użyć, aby skorzystać z energii słonecznej. Jest to między innymi wykorzystanie systemów słonecznych, pasywne ogrzewanie i oświetlanie w słoneczne dni, systemy fotowoltaiczne, ogrzewanie wody czy wykorzystanie słońca do ogrzewania i chłodzenia pomieszczeń.

Energia słoneczna może być wykorzystana zarówno w dużych jak i małych rozwiązaniach. Przedsiębiorstwa i przemysł mogą zdywersyfikować źródła energii, poprawić efektywność, a także zaoszczędzić pieniądze właśnie poprzez wybór technologii słonecznych. Właściciele domów mogą wykorzystywać energię słoneczną do ogrzewania i chłodzenia pomieszczeń i ogrzewania wody. Mogą nawet być w stanie produkować wystarczająco dużo energii, aby ich gospodarstwa były samowystarczalne energetycznie.

Nadmiarową energię elektryczną można sprzedawać lokalnym odbiorcom. Istnieje wiele strategii projektowania systemów słonecznych, które mogą wspierać zarówno domy jak i obiekty handlowe. Obiekty te działałyby bardziej efektywnie i rozwiązania te uczyniłyby je bardziej przyjemi- nymi i wygodnymi miejscami do życia i pracy.

W przypadku elektrowni wykorzystanie obfitego w energię źródła słonecznego może okazać się korzystne także dla ich klientów. Systemy słoneczne z koncentratorami pozwalają elektroniom na produkcję energii elektrycznej ze słońca na większą skalę, co z kolei pozwala klientom na korzystanie z energii słonecznej, bez dokonywania osobistych inwestycji w systemy solarnie.

Systemy słoneczne z koncentratorami (CSP):

- Systemy używające soczewek lub luster oraz systemów śledzących do zebrania światła słonecznego w małe wiązki. Wiązka światła może być stosowana jako źródło ciepła dla tradycyjnych elektrowni. Istnieje wiele rodzajów technologii koncentrujących, takich jak rynny, wieże słoneczne czy czasze paraboliczne.

1.5.2 Energia wiatrowa

Łopata działa podobnie jak skrzydło samolotu. Gdy wieje wiatr, na zawartej stronie łopaty tworzy się poduszkę powietrza, w której zaś niskie ciśnienie, które przyciąga łopatę. Tak powstaje siła ciągu. Siła ciągu jest znacznie silniejsza niż siła oporu łopaty. Połączenie nośnej i oporu powoduje wirowanie wirnika i całego wału, który obraca również generator wytwarzając energię elektryczną.
Turbiny wiatrowe mogą być stosowane jako samodzielne urządzenia lub mogą być też podłączone do sieci energetycznej. Często jest też organizowanie systemów energetycznych zbudowanych z turbin wiatrowych i ogniw fotowoltaicznych. Na większą skalę duże liczby turbin wiatrowych budowane są zwykle blisko siebie, tworząc farmy wiatrowe. Wiele firm energetycznych wykorzystuje już elektrownie wiatrowe do produkcji energii dla swoich klientów. Samodzielne turbiny wiatrowe są często wykorzystywane do pompowania wody czy zapewnienia łączności w niektórych rejonach świata. Także, właściciele domów, rolnicy i hodowcy mieszkający w wietrznych miejscach mogą wykorzystywać turbiny wiatrowe jako sposób na redukcję opłat za prąd.

1.5.3 Elektroliza

Elektroliza wymaga przepływu prądu elektrycznego przez środowiska jonowe, co powoduje, że na elektrodach zachodzą reakcje chemiczne. Elektrody używane w elektrolizery są metalowe, tak aby przewodziły prąd elektryczny. Istnieją stałe i ciekłe związki jonowe i wolne jony mogą przewodzić prąd w oby tych typach związków.

Jon:
Cząstka, która jest elektrycznie naładowana (może mieć ładunek dodatni lub ujemny), atom lub cząsteczka, która zyskała lub utraciła elektrony.

Elektroliza wody to rozbijanie cząsteczki wody na wodór i ten przy użyciu energii elektrycznej. Elektrolizę czystej wody trudno jest przeprowadzić, ponieważ ma bardzo niską przewodność - około milion razy mniejszą niż woda morska. Przewodność elektryczna jest polepszana poprzez dodanie elektrolitu, tak jak sol, kwas lub zasada.

Źródło energii elektrycznej jest podłączone do dwóch elektrod, które są wprowadzane do wody. Wodór pojawia się na ujemnie naładowanej katodzie, zaś tlen na dodatnio naładowanej anodzie. Ilość wodoru i tlenu będzie generowana proporcjonalnie do dostarczonego ładunku elektrycznego. Elektroliza zachodzi, ponieważ dostarczana jest energia niezbędna do odseparowania jonów na odpowiednich elektrodach.

1.5.4 Ogniwa paliwowe

Ogniwa paliwowe przekształcają energię chemiczną z wysoką wydajnością bezpośrednio w energię elektryczną i ciepło. Urządzenia te mogą być stosowane w dowolnym miejscu i dowolnym czasie, tak długo jak to konieczne, i tak długo, jak dostarczany jest wodor. Ogniwa paliwowe są jednym z niewielu alternatywnych urządzeń energetycznych, które mogą być używane do zastosowań przenośnych takich jak zasilanie elektroniki przenośnej, samochodów, domów, budynków, a nawet statków kosmicznych (Ilustracja 1-16 przedstawia ogniwa paliwowe NASA). Podstawowa budowa ogniwa paliwowego jest prosta. Składa się ono z wielu warstw. Każda warstwa składa się z elektrolitu pokrytego z każdej ze stron porowatymi elektrodami - anodą i katodą.

Anoda:
Ujemnie naładowane zaciski ogniwa paliwowego lub baterii dostarczającej prąd.

Katoda:
Dodatnio naładowane zaciski ogniwa paliwowego lub baterii dostarczającej prąd.

Ilustracja 1-16. Ogniwa paliwowe NASA
Wodór jest rozbijany na protony i elektrony po stronie anody oraz łączy się z tlenem, wytwarzając wodę po stronie katody. Protony są przenoszone od anody do katody przez elektrolit, a elektrony są przenoszone do katody przez obwód zewnętrzny. Na katodzie, tlen reaguje z protonami i elektronami, tworząc wodę i wytwarzając przy tym ciepło [10]. Zarówno anoda jak i katoda zawierają katalizator, który przyspiesza procesy elektrochemiczne.

Reagenty są transportowane w procesie dyfuzji i/lub konwekcji do katalizowanych powierzchni elektrod, gdzie zachodzą reakcje elektrochemiczne. Chociaż składowe reakcje, w różnych typach ogniw mogą być różne, to ogólna reakcja powinna zachodzić według schematu podanego powyżej. Woda i ciepło wytwarzane przez ogniwo paliwowe muszą być na bieżąco usuwane, ponieważ mogą powodować nieprawidłowe działanie komórek paliwowych [11].

Ogniwa mogą korzystać z szeregu różnych paliw do wytwarzania energii z wodoru, między innymi metanolu, paliw kopalnych czy materiałów pochodnych biomasy. Korzystanie z paliw kopalnych do wytwarzania wodoru jest traktowane jako pośredni sposób produkcji wodoru, metanu, metanolu lub etanolu wykorzystywanych w ogniach paliwowych, zanim infrastruktura wodorowa nie zostanie dopracowana. Paliwa mogą również pochodzić z wielu źródeł biomasy, w tym metanu z odpadów komunalnych, osadów ściekowych, pozostałości z leśnictwa, wysypisk śmieci i odpadów rolniczych i zwierzęcych.
1.6 Koncepcja gospodarki opartej na czystej energii wodorowej bazująca na połączeniu źródeł odnawialnych

Większość obecnych potrzeb energetycznych na świecie zaspokaja paliwa kopalne. Paliwa te są łatwe do uzyskania, przechowywania i transportu z powodu dużej ilości pieniędzy, które zostały wydane w celu stworzenia, wybudowania i utrzymania systemu dystrybucji. Dzięki obecnemu systemowi dystrybucji paliw, technologia rozwijała się w ciągu ostatnich dwóch stuleci szybciej, niż w całej historii. Pomimo wszystkich zalet, paliwa kopalne mają również negatywny wpływ na środowisko, a część tych negatywnych skutków najprawdopodobniej dopiero dostrzeżemy się w przyszłości. Niektóre szkodliwe czynniki zanieczyszczenia powietrza powodują m.in. kwaśne deszcze, zanieczyszczenie wody i gleby w wyniku wycieków i przecieków, akumulację dwutlenku węgla w atmosferze. Zanieczyszczenia te są w stanie podnieść temperaturę atmosfery ziemskiej i przyczynić się do wyginęcia wielu gatunków.

W większości krajów na całym świecie, jeśli doszłoby do przerwania dostaw paliw kopalnych, cała gospodarka zostałaby zatrzymana. Nie byłby możliwy dojazd do pracy czy korzystanie z energii elektrycznej w domach lub miejscach pracy. Także samochody, które spalają benzynę powodują zanieczyszczenie powietrza. W procesie spalania benzyny, tlenek węgla i tlenki azotu, oraz niespalone węglowodory wędrują do atmosfery. Katalizatory redukują znaczną część tych zanieczyszczeń, ale nie są one idealne. Wiele miast ma również obecnie niebezpieczne poziomy ozonu w powietrzu.

Ponadto, poza negatywnymi skutkami stosowania tych paliw, także ograniczenie ich dostaw nieuchronnie wymusi użycie innych form energii. Popyt na energię będzie stale wzrastać ze względu na stały wzrost populacji światowej.

Przyszłość gospodarki energetycznej to połączenie wielu technologii odnawialnych źródeł energii. W odniesieniu do paliw to wodór jest jednym z najbardziej wydajnych. Jest to doskonale widoczne w statkach kosmicznych NASA - jako podstawowe paliwo stosuje się wodor.

![Ilustracja 1-18. Powiązania wodoru z systemem energetycznym](image-url)
Wodór jest najczęściej występującym pierwiastkiem w świecie, jednak nie ma go w czystej postaci na Ziemi. W związku z tym musi on być wyodrębniany z typowych paliw lub wody. Proces, najczęściej stosowany w celu uzyskania wodoru polega na przepuszczeniu gazu ziemnego nad parą wodną. Może być on również uzyskiwany z energii jądrowej, węgla, biopaliw, a nawet z odpadów.

Aby z powodzeniem zorganizować społeczeństwo oparte na energii odnawialnej, konieczne jest znalezienie sposobu na przechowywanie energii, ponieważ dostawy energii odnawialnej są zwykle przerywane. Zarówno w przypadku energii słonecznej jak i wiatrowej istnieją doskonałe metody na jej pozyskiwanie z zasobów naturalnych, jednak natężenie światła słonecznego czy też natężenie wiatru zmieniają się. Kiedy te źródła są niedostępne - elektryczność nie może być wytwarzana. Dlatego w czasie gdy wytworzana jest duża ilość energii, można z wody uzyskiwać wodór, a następnie zmagazynować go do późniejszego wykorzystania.

Ogniwa paliwowe są już wykorzystywane od dekad w rozwiązaniach stacjonarnych – zarówno w przemyśle jak i zastosowaniach domowych. Przenośne urządzenia elektroniczne, takie jak laptopy, aparaty fotograficzne czy telefony komórkowe zasilane za pomocą wodoru mogą działać od 10 do 20 razy dłużej. Główni producenci samochodów już dawno zainwestowali w pojazdy napędzane ogniwami wodorowymi. Chociaż koszty systemów energii odnawialnych wciąż są bardzo wysokie, to nowe rozwiązania technologiczne i większe ilości produkowanych urządzeń powinny obniżyć te koszty.

Dodatkowo, koszty paliw kopalnych w przyszłości będą wzrastać. Gdy koszt technologii źródeł energii odnawialnych stanie się konkurencyjny z rosnącymi kosztami ropy, gospodarka oparta na paliwach kopalnych zostanie zastąpiona nową gospodarką opartą na energii odnawialnej.

W przyszłości każde gospodarstwo domowe będzie w stanie uzyskiwać własną energię. Przyczyni się to do redystrybucji władzy, ponieważ światowe koncerny naftowe nie będą już kontrolować takiego bogactwa zasobów. Poszczególne gospodarstwa domowe będą mogły dzielić się swoją energią poprzez sieć energetyczną z obszarami, które będą miały jej mniej ze względu na warunki pogodowe.

W przyszłości, samochody będą podłączane do gniazdek np. w domach i biurach i będą stanowiły dodatkowe źródło energii elektrycznej. Domy wymagają średnio tylko około 10 kW energii aby w pełni funkcjonować. A ponieważ ogniwa w samochodach mogą generować nawet i 40 kW mocy, zatem samochód mógłby stać się elektrownią dla domu lub biura. Samochody mogą być również podłączone do sieci elektrycznej budynków biurowych i w czasie, kiedy ludzie będą w pracy, będą mogły wspomagać ich zasilanie. Przejście do gospodarki wodorowej stanowi duże wyzwanie i wielką szansę na miarę 21 wieku.

1.7 Podsumowanie

Zanieczyszczenia generowane przez paliwa kopalne mają wpływ na atmosferę ziemską i zanieczyszczenie powietrza, wody i gruntu. Dlatego istnieją zarówno ekonomiczne jak i środowiskowe przyczyny rozwoju alternatywnych technologii energetycznych. Istnieje wiele technologii uzyskiwania energii, które zostały zbadane i opracowane. Należą do nich między innymi takie źródła energii odnawialnej jak energia słoneczna, wiatrowa, energia wodna, bioenergia, energia geotermalna, jak również wiele innych. Ogniwa słoneczne wykorzystują słońce do produkcji energii elektrycznej, energia wiatru jest uzyskiwana z energii kinetycznej wiatru, a bioenergia wykorzystuje energię roślin.

Każde z tych alternatywnych źródeł energii ma swoje wady i zalety, a wszystkie są na różnych etapach rozwoju. Zestaw edukacyjny umożliwia zaznajomienie się z hybrydowym systemem pozyskiwania energii odnawialnej, która obejmuje pozyskiwanie energii słonecznej, wiatrowej, z ogniw paliwowych w połączeniu z elektrolizą. Ten zestaw edukacyjny w małej skali prezentuje zasady stojące za powstającą gospodarkę energią odnawialną. Obecnie trwają prace nad zmniejszeniem kosztów związanych z gospodarką energetyczną przyszłości, ale niezbędne są jeszcze poprawki, które muszą być szybko wykonane. Musimy nauczyć się, jak poprawić te technologie - bo przyszłość wkrótce będzie teraźniejszością.